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Abstract. The influence of quantum electrodynamic (QED) corrections on the valence electrons in super-
heavy atoms with nuclear charge Z ≈ 112 is studied within the effective local-potential approximation
and the self-consistent approach. The results are obtained from a relativistic coupled-cluster calculation
without inclusion of QED effects. The difference between the effective-potential and the self-consistent
approach for the leading QED correction to the energy of the valence-electron levels in any superheavy
atoms defines an inaccuracy of about 0.1% of the first ionization potential.

PACS. 31.30.Jv Relativistic and quantum electrodynamic effects in atoms and molecules

1 Introduction

Recent experimental success in the synthesis of super-
heavy nuclei [1–5] has provided strong indications for the
existence of the so-called “island of stability” for neutron-
rich nuclei with nuclear charge numbers in the region
Z ∼ 112. According to theoretical predictions, the half-life
time for nuclei with proton numbers Z ∼ 108 and neutron
number N ∼ 162, as well as for isotopes with Z ∼ 114
and N ∼ 184 could be very long. These pairs of pro-
ton and neutron numbers were supposed to correspond to
filled proton and neutron shells. Neighboring nuclei close
to these “magic numbers” of Z and N should be rather
long-living as well. Presented in a graph (Z,N) (Fig. 1)
such nuclei are supposed to form the island of stability.

From the variety of experimental investigations on the
synthesis of long-living superheavy nuclei, we mention
here only the results reported in some recent papers. Ac-
cording to [2], for instance, the half-life time for the iso-
tope Hs (Z = 108) is found to be of about several seconds.
Similarly, for the two isotopes with nuclear charge num-
bers Z = 111 [3] and Z = 114 [4] the corresponding time
periods of half-decay turned out to be of about one second,
too.

A further breakthrough in the synthesis of long-living
isotopes with proton number Z = 112 — so-called Eka-
Hg (E112), which was supposed to belong to the group 12
in the Mendeleyev Periodic Table (MPT) — has been
reported from the Flerov Laboratory of Nuclear Reac-
tions (Dubna). The half-decay times of several identified
isotopes of Eka-Hg up to about a few minutes [5] have
been deduced, which appeared to be also in a beautiful
agreement with present theoretical predictions (see, for in-
stance, Tab. 2 in Ref. [6]). The successful formation of such
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Fig. 1. The island of stability. Dark figures in the center in-
dicate stable, long-living nuclei; the border of a big cloud rep-
resent nuclei, which decay shortly after their formation. The
heaviest known element with Z = 116 (depicted as a dark
square) is formed in reaction of 248Sm and 48Ca and which
have the half-life time 50 ms.

superheavy nuclei and the preparation of neutral atoms al-
lowed for investigation of their chemical characteristics as
well. According to these findings the superheavy element
with Z = 112 behaves more like a homologue of the noble
gas radon (Rn) rather than mercury (Hg).

The valence shell of the Eka-Hg atom contains only
two electrons, which allows for considerable simplifica-
tions in corresponding atomic structure calculations. A
pioneering paper about such atoms is reference [7], where
electron binding energies and X-ray energies for the su-
perheavy elements with Z = 114, 126 and Z = 140
have been calculated within a relativistic self-consistent
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(Hartree-Fock-Slater) approach. As can be seen from Fig-
ure 1, the isotopes of the element E114 could be located
on top of the island of stability.

Usually, most of the atomic structure calculations for
superheavy elements do not account for QED effects. So
far, only in a few more recent articles attempts were un-
dertaken to study the influence of QED corrections on
the binding energy of valence electrons in superheavy
atoms [8,9] and to explore their impact on chemical prop-
erties of such elements.

Within this paper we are going to address related ques-
tions. We show that QED corrections should be taken into
account in exact evaluations of the energy levels of valence
electron in superheavy elements. Moreover, the magnitude
of the difference between results obtained by incorpora-
tion of QED effects within the self-consistent and within
local potential approaches, respectively, turns out to be
of about the same order as the inaccuracy of relativistic
calculations where QED corrections are neglected.

The paper is organized as follows: the most impor-
tant one-loop QED contributions are considered in Sec-
tion 2. Particular emphasize is lead on the description of
the method employed for a systematic account of QED
effects in the superheavy atoms (Sect. 3). Corresponding
numerical results and the role of QED corrections for the
level energy of outer-shell electrons is subsequently dis-
cussed. A simple approach for the construction of effec-
tive local potentials for valence electrons is explained in
the Appendix.

Atomic units e = m = � = 1, where −e is the charge of
the electron, m is its mass and � is the Planck’s constant,
are mainly used this paper.

2 Leading one-loop QED corrections

This section reviews the evaluation scheme for the dom-
inant one-loop QED corrections (self energy and vacuum
polarization) to the level energy as it will be applied be-
low to outer-shell electrons in superheavy atoms. While
the vacuum-polarization effect appears as modification of
the external potential, which allows for immediate incor-
poration within relativistic many-body approaches, the
self-energy effects — since they are inherently nonlocal
— require more efforts. A recent attempt to account for
QED corrections in many-electron systems [9] provides
an estimate of self-energy effects within the framework
of the GRASP code. However, the accuracy of such a
treatment is very difficult to determine. Accordingly, we
prefer a more transparent procedure by evaluating the
one-electron self energy within a local potential approach.
Questions about the accuracy will be addressed in Sec-
tion 3.

2.1 Self-energy correction

For electron states in heavy atoms the parameter Zα can-
not be considered as being small. Accordingly, accurate

�� �� �� ��
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Fig. 2. The expansion of the electron SE graph in powers of
the effective local potential V . The double solid line denotes
an electron in the effective local potential V , the ordinary solid
line denotes the free electron propagator and the wavy line de-
notes the photon propagator. The dashes line with the cross
at the end denotes the interaction with the effective local po-
tential V .

evaluations of QED self-energy corrections require all-
order calculations with respect to Zα. Moreover, in the
case of heavy atoms one is faced with the situation that
the effective potentials describing the electron interaction
with the nucleus are rather short-range and the interac-
tion occurs when the outer shell electrons penetrate deeply
into the core.

The method that enabled to overcome this difficulty
has been first introduced in [10] and applied to the eval-
uation of the self energy (SE) for K-shell electrons in a
mercury atom. The general idea of the method is based on
the potential expansion. The Feynman graph representing
the expansion of the SE of a bound electron in the state
a is depicted in Figure 2. The divergencies involved ap-
pear in the first two terms, called “zero-potential” (z) and
“one-potential” (o) terms, respectively. The third term,
so-called “many-potential” (m) term, is finite but the most
difficult one for numerical evaluations. The evaluation of
this term together with renormalization may be achieved
according to the scheme presented in [10] based on rear-
rangements of the three terms of the potential expansion:
∆ESE

a = ∆E
(z)
a +∆E

(o)
a +∆E

(m)
a The renormalized self-

energy shift of a level a appears as

∆ESE,ren
a = ∆Eren(z)

a +∆Eren(o)
a +∆Eren(m)

a , (1)

where the label a denotes the electron state in the atom.
According to Figure 2 the renormalized expressions for
∆E

ren(z)
a (part (z) of Fig. 2) and ∆E

ren(o)
a (part (o)

of Fig. 2) are obtained by means of the subtractions
scheme [10]

∆Eren(z)
a = ∆E(z)

a −∆E(z1)
a −∆E(z2)

a , (2)

∆Eren(o)
a = ∆E(o)

a −∆E(o1)
a , (3)

where ∆E(zi)
a , ∆E(oi)

a (i = 1, 2, ...) denote the terms of the
Taylor expansion of the lowest-order self-energy operator
around the mass shell.

The Ward identity implies ∆E(z2)
a = −∆E(o1)

a . Within
the direct potential expansion approach the analytically
known expressions for the renormalized contributions
∆E

ren(z)
a and ∆E

ren(o)
a are employed. They can be ob-

tained from the corresponding S-matrix elements in the
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well-known momentum-space representations. The renor-
malized expression for the zero-potential term reads

∆Eren(z)
a =

∫
Ψa(p)Σren(p, Ea)Ψa(p) d3p, (4)

where Σren(p, Ea) is the renormalized free electron self-
energy insertion (see Ref. [12]), Ψa(p) is the bound-
electron wave function in the momentum space. The
general gauge-dependent expression for Σren(p) appears
to be [11]

Σren(p) =
α

4π
(� p−m)

{
m2

p2
ln

∣∣∣∣ p
2 −m2

m2

∣∣∣
(
d0
p2

m2
− 3

)

− 1
2

ln
λ2

m2
(6 − 2d0) − d0

+
� p
m

[
m2

p2
ln

∣∣∣∣ p
2 −m2

m2

∣∣∣∣
(
d0
p2

m2
−3

)
+d0

m2

p2

]}
,

(5)

where m is the electron mass, p ≡ (p, p0), p0 = Ea, � p =
pµγµ and γµ denotes the Dirac matrices.

The appearance of a photon mass λ in equation (5)
implies the presence of an infrared divergency after renor-
malization, d0 is the parameter defining the gauge. In the
Feynman gauge d0 = 1 and in the Fried-Yennie gauge
d0 = 3. One can see that in the Fried-Yennie gauge the
infrared divergency is absent. However, calculations per-
formed within this gauge become more complicated for the
higher-order terms of the potential expansion. Therefore,
the Feynman gauge will be employed.

The renormalized one-potential term is given by

∆Eren(o)
a =

∫
Ψa(p)Λren

0 (pEa;qEa)eV (p − q)

× Ψa(q) d3pd3q. (6)

An expression for renormalized free vertex function
Λren

0 (pEa;qEa), which is most convenient for numerical
evaluations, is obtained within the Feynman gauge [12]

Λren
0 (pEa;qEa) = Λ̃ren

0 (pEa;qEa) + ln
λ2

m2
, (7)

where the infrared-finite part reads

Λ̃ren
0 (pEa;q, Ea) = γ0[4C̃24 − 2 + 2m2

eC0 − 4pp′(C0 + C11

+ C12 + C23) − 2p2(C11 + C21) − 2p′ 2(C12 + C22)]

+ � pp0[4(C11 + C21)]+ � pp′0[4(C0 + C11 + C12 + C23)]

+ � p′p0[4(C0 + C11 + C21 + C23)]+ � p′p′0[4(C12 + C22)]

− � pγ0 � p′[2(C0 + C11 + C12)]

− p0[4me(C0 + 2C11)] − p′0[4me(C0 + C12)]. (8)

Here C0, Cij denote the Feynman parameter integrals:

m2C0 =
∫ 1

0

dy
1
a

ln
(
a+ b

b

)
, (9)

m2C11 = −
∫ 1

0

dy
y

a

[
1 − b

a
ln

(
a+ b

b

)]
, (10)

m2C12 = −
∫ 1

0

dy
1 − y

a

[
1 − b

a
ln

(
a+ b

b

)]
, (11)

m2C21 =
∫ 1

0

dy
y2

a

[
1
2
− b

a
+

(
b

a

)2

ln
(
a+ b

b

)]
, (12)

m2C22 =
∫ 1

0

dy
(1 − y)2

a

[
1
2
− b

a
+

(
b

a

)2

ln
(
a+ b

b

)]
,

(13)

m2C23 =
∫ 1

0

dy
y(1 − y)

a

[
1
2
− b

a
+

(
b

a

)2

ln
(
a+ b

b

)]
,

(14)

C24 =
1
4

{
1 −

∫ 1

0

dy
b

a

[
1 − b

a
ln

(
a+ b

b

)]
−
∫ 1

0

ln(a+ b)
}

(15)

with the abbreviations b = yρ − (1 − y)ρ′ and a + b =
1−y(1−y)k2/m2, k2 = (p−q)2, ρ = (m2 +p2−E2

a)/m2,
ρ′ = (m2 − E2

a + q2)/m2 and p0 = qo = Ea. The infrared
divergences in ∆Eren(z)

a and ∆Eren(o)
a cancel in view of the

Ward identity and the Dirac equation [12,13].

The expression for the many-potential term ∆E(m) is
both ultraviolet and infrared finite, but most difficult to
evaluate numerically. It can be treated in the following
way. The S-matrix element, corresponding to Figure 2m
reads

〈Ψa|S(4)|Ψa〉 = e4
∫
Ψa(x1)γµ1S(0)(x1x2)γµ2eVµ2(x2)

× S(x2x3)γµ3eVµ3(x3)S(0)(x3x4)γµ4Ψa(x4)

×Dµ1µ4(x1x4)d4x1, ..., d
4x4, (16)

where Vµ(x) = δµ4V (x) is the nuclear potential,
S(0)(x1x2) is the free electron propagator, S(x2x3) is
the electron propagator in the external potential Vµ and
Dµ1µ4(x1x4) is the photon propagator in an arbitrary
gauge. The free photon propagator in the momentum
space reads

Dµ1µ2(k) = − 1
k2

(
gµ1µ2 −

kµ1kµ2

k2

)
− d0

k2

kµ1kµ2

k2
. (17)

The most general expression for the many potential con-
tribution to matrix element of the self-energy operator



174 The European Physical Journal D

appears as

〈
Ψa

∣∣∣Σ̂ren(m)
∣∣∣Ψa

〉
=

(
Σ̂ren(m)(Ea)

)
aa

=

− α

π

∑
m

∫ ∞

0

dwRe
{∑

n

1
Ea − Em − iw

∫
φ+

m(−w, r1)

×Ψa(r2)
1 − α1α2

r12
e(−wr12) Ψm(r1)φa(w, r2) d3r1d

3r2

}
.

(18)

Here the summation over m is extended over the entire
Dirac spectrum for the bound electron, r12 = |r1 − r2|
and αi are the Dirac matrices acting on the different wave
functions. The function φm(ω, r) is defined as:

φm(ω, r) =
∑

ν

(
V̂

)
νm

Em − Eν − iω
Ψν(r), (19)

where the sum over ν is the extended over the entire free
Dirac spectrum, Ψν(r) and Eν denote the corresponding
free eigenfunctions and eigenvalues of the Dirac equation.

Within the numerical B-spline approach [14] the elec-
tron propagator S(0) can be represented in the same way
as the bound propagator, if one sets Z = 0. Equation (18)
thus contains in total a triple summation over the Dirac
spectrum. These summations can be performed numeri-
cally with modern computer facilities.

2.2 Vacuum-polarization correction

Apart from the one-loop electron self energy the another
radiative correction the one-loop vacuum-polarization
(VP) correction should be taken into account. After inte-
grating over time and frequency variables in the S-matrix
element corresponding to the VP correction (part (a) in
Fig. 3) to the energy level |a〉 reads

∆EVP
a =

∫
Ψa(r1)γ0VVP(r1)Ψa(r1) d3r1, (20)

where

VVP(r1) = e

∫
ρVP(r2)
|r1 − r2| d

3r2 (21)

is the vacuum-polarization potential generated by the in-
duced vacuum-polarizations charge density

ρVP(r2) =
e

2π
Tr

(∫ ∞

−∞
Ŝ(ω) γ0 dω

)
, (22)

respectively. In equation (23) Ŝ(ω) is the temporal Fourier
transform of the Green (resolvent) operator of the Dirac
equation and the symbol Tr indicates the trace over the
entire Dirac spectrum.

The first term of this expansion (Fig. 3b) vanishes in
view of the the Furry theorem [15], according to which
free electron loops with an odd number of vertices do not
contribute. The divergency arrives in the second term of

�� �� �� ��
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Fig. 3. The expansion of the VP graph in powers of the effec-
tive external potential V . Notations are the same as in Figure 2.

the expansion only (Fig. 3c), while the remainder term
Figure 3d is finite.

The contribution of the one-potential term can be rep-
resented in the form

∆EUeh
a =

∫
d3r Ψa(r)γ0VUeh(r)Ψa(r) . (23)

For a point nucleus the Uehling potential reads [16]

VUeh(r) =
2α2Z

3πr

∫ ∞

1

e−2mrχ

(
1 +

1
χ2

) √
χ2 − 1
χ2

dχ.

(24)
Here and below in equations (26, 27) the electron mass m
is explicitly restored. For a point nucleus the asymptotic
behavior of the Uehling potential is given by the expres-
sions

VUeh(r) =
α2Z

r

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− 1
3π

[5/3 + 2C + 2 ln(mr)], mr � 1

1
4
√
π

e−2mr

(mr)3/2
, mr � 1,

(25)
where C denotes Eulers’ constant. Remembering that the
Bohr radius in relativistic units is r0 = 1/mα, we see that
at characteristic atomic distances in the neutral hydrogen
atom (Z = 1) the deviation from the Coulomb potential is
exponentially small, i.e. VUeh(r0) ≈ e−1/α. However, this
is not the case in hydrogenlike ions with large values of Z,
where

VUeh(r0) ≈ VUeh(1/mαZ) ≈ e−1/αZ .

One can check that taking into account the Uehling term
will be sufficient in the case of many-electron system. For
extended nuclei the Uehling potential has to be replaced
by the expression [17–19]:

VUeh(r) = −α
2

π

∫
d3r′ρ(r′)

∫ ∞

1

dt
√
t2 − 1

×
(

2
3t2

+
1

3t4

)
e−2mt|r−r′|

|r − r′| , (26)

where ρ(r′) is the nuclear charge density.
For the latter we the Fermi distribution

ρ(r) =
ρ0

1 + exp
[
r − an

cn

] (27)
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Fig. 4. (Color online) The graphs of the vacuum-polarization
potentials corresponding to the Uehling and Wichmann-Kroll
contributions are depicted together with the electron density
for valence shell in Eka-Au. Compared with the Uehling term,
the Wichmann-Kroll (WK) contribution is multiplied by a fac-
tor of 102.

is employed, where the parameters an and cn are defined
by the nuclear mass. ρ0 can be computed via the expres-
sion

ρ0 =
3Z

4c3nN
. (28)

The nuclear charge density ρ(r) is defined by the normal-
ization condition

∫
d3rρ(r) = Z; the parameter N equals

N = 1 + π2 a
2
n

c2n
+ 6

a3
n

c3n

∞∑
k=1

(−1)n−1

k3
e−kan/cn .

After the angular integration equation (27) takes the
form [20]

VUeh(r) = −2α2

3r

∫ ∞

0

dx xρ(x)
∫ 1

0

du
(
1 − u2

)1/2

×
(

1 +
u2

2

) (
e−2|r−x|/(αu) − e−2(r+x)/(αu)

)

= SUeh(r)/r. (29)

The first evaluation of the remainder term to first all
orders in αZ has been performed by Wichmann and
Kroll [21]. For the purposes here it will sufficient to employ
the next leading-order contribution to the Wichmann-
Kroll potential VB obtained by Blomqvist [22]

∆EWKB
a =

∫
drΨ+

a (r)VB(r)Ψa(r), (30)

with the potential (which is depicted in Fig. 4 as well):

VB(r) =
α(Zα)3

πr

∫ ∞

0

dt e−2tr 1
t4

×
{
− 1

12
π2[t2 − 1]1/2Θ(t − 1) +

∫ t

0

dx [t2 − x2]1/2f(x)
}
,

(31)

f(x) = − 2xψ(x2) − x ln(1 − x2) +
1 − x2

x2

× ln
1 + x

1 − x
ln(1 − x2) +

1 − x2

4x2
ln2 1 + x

1 − x

+
2 − x2

x(1 − x2)
ln(1 − x2)

+
3 − 2x2

1 − x2
ln

1 + x

1 − x
− 3x, x < 1, (32)

f(x) = x−2ψ(x−2) − 3x2 + 1
2x

[ψ(x−1) − ψ(−x−1)]

−2x2 − 1
2x2

[
ln2(1 − x−2) + ln2 x+ 1

x− 1

]

−(2x− 1) ln(1 − x−2) ln
x+ 1
x− 1

+
3x2 + 1

4x
ln2 x+ 1

x− 1

−2 lnx ln(1 − x−2) − 3x2 + 1
2x

lnx ln
x+ 1
x− 1

+
[
5 − x(3x2 − 2)

x2 − 1

]
ln(1 − x−2)

+
[
3x2 + 2

x
− 3x2 − 2

x2 − 1

]
ln
x+ 1
x− 1

+ 3 lnx− 3,

x > 1, (33)

with the di-logarithmic function

ψ(x) = −
∫ x

0

dy
ln(1 − y)

y
=

∞∑
n=1

xn

n2
, − 1 < x < 1, (34)

and Θ(x) as the usual step function. Although the Uehling
term usually yields a fairly good approximation for the
total VP on the level of 10%, nevertheless, accurate
calculations for the valence electron levels in heavy el-
ements should account for the higher-order Wichmann-
Kroll term. In Figure 4 the dominant Uehling contribu-
tion and the higher-order Wichmann-Kroll contribution
of the induced VP potential are displayed together with
the radial density of the valence electrons in the Eka-Au
atom.

3 QED effects within the frame of local
potential and self-consistent approaches

In recent years relativistic atomic structure calculations
for many-electron atoms have become increasingly more
advanced. They comprise, for example, the Breit inter-
actions and many multi-configuration methods. However,
much less efforts have been made to take into account rig-
orously the QED effects to the energy of multi-electron
levels or to account for the corresponding wave-function
corrections. This may be due to the widespread opinion
according to which the influences of QED corrections are
negligible compared to relativistic and correlation effects.
Although their evaluation is quite difficult to achieve one
should consider this task, since they can indeed influence
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Table 1. The binding energy for the valence electrons and
corresponding QED corrections in superheavy atoms (in eV).

System Eka-Au Eka-Hg Eka-Hg+

EDF
7s –11.4313 –12.2749 –21.2681

EIP1
7s –10.6 a –11.973 b

∆ESE,DF
7s 8.87×10−2 0.1024 0.1221

8.66×10−2 c

∆EUeh,DF
7s –3.24 ×10−2 –3.81×10−2 –4.29×10−2

–3.20 ×10−2 c

∆EUeh,IP1
7s –3.14×10−2 –3.51×10−2

∆EUeh,SCF.
7s –3.96×10−2 –4.07×10−2 –4.95×10−2

∆EWK,DF
7s 1.66×10−4 1.34×10−4 9.23×10−5

∆EQED,DF
7s 5.63×10−2 6.43×10−2 7.92×10−2

a Reference [27], b reference [25], c reference [8].

chemical properties of superheavy atoms. The magnitude
of QED corrections on valence-electron states could to be
even larger as the uncertainties of the results obtained
within different relativistic many-body approaches. This
can be seen by performing calculations with and without
implementation of QED radiative effects.

The remaining discrepancy between predictions for the
valence-electron energy levels in Eka-Hg and according to
the MPT [23] was of about −0.2 eV. This appears as the
difference between a pure Dirac-Fock (DF) calculations
for the level energy of 6d5/2 and 7s electrons, respectively.
QED corrections may potentially help to improved the dis-
crepancy. The sum of the SE and VP contributions raises
the chemical activity. But the magnitude of this “asset”
is of about 6 × 10−2 eV [8].

Reinvestigation of the absorption of Eka-Hg on a gold
surface — without taking into account QED effects — pre-
dicted a chemical behavior between mercury (group 12 el-
ement) and a noble gas. See, for example, reference [24],
which has been obtained within the framework of relativis-
tic density-functional approach and later been confirmed
by calculations presented in [25]. Inclusion of the total
QED corrections could shift such prediction for chemi-
cal properties towards the behavior of a mercury homo-
logue. The remaining energy difference between the level
6d5/2 and 7s obtained from RCC-SD calculations without
QED amounts to 0.177 eV [26]. With QED corrections
(see Tab. 1) this energy difference is of about 0.24 eV.

The first calculation of QED effects for a valence elec-
tron in Eka-Au has been presented in reference [8] within
the effective local potential approach. Table 1 compiles
the results of our present analysis. The first line of Ta-
ble 1 presents our results for the Dirac Fock (DF) one-
electron energies of the 7s-states (EDF

7s ). They are com-
pared with the values of the corresponding first ionization
potentials (EIP1

7s ) obtained within the framework of multi-
configuration methods. Compared with the more precise
values EIP1

7s the results obtained from DF calculations
have an accuracy of about 7% for Eka–Au [27] and about
2% for Eka–Hg [25], respectively.

The next five lines of Table 1 display the major contri-
butions of QED radiative corrections for the three systems
under consideration. All values indicated with subscripts
“DF” and “IP1” were calculated within the effective local-
potential approach. As it was shown in reference [8] one
has quite some freedom in formulating an effective local
potential. In this work we employed the effective potential,
which is obtained by inversion of the DF-equation (indi-
cated in Appendix A). The parameter ε was chosen equal
to the DF one-electron energy EDF

7s when calculating the
“DF” values and equal to the ionization potential EIP1

7s in
case of the “IP1” values.

The self-energy correction ∆ESE,DF
7s are presented in

the 3rd line of the Table 1. In Uehling approxima-
tion the vacuum-polarization corrections ∆EUeh,DF

7s and
∆EUeh,IP1

7s , obtained within the different approximations
are shown in the 4th and 5th line, respectively. The
Wichmann-Kroll (WK) corrections ∆EWK,DF

7s (Fig. 3d)
given in the 7th line of Table 1 turn out to be rather small
due to an additional factor of α2. However, as a function of
r the WK potential falls off of much slower (inverse power
law) then Uehling term (exponential decrease), which is
depicted in Figure 4. The total results for the one-loop
QED corrections (∆EQED,DF

7s ) are given in the last line of
Table 1.

The 6th line in Table 1 presents the results of a self-
consistent field (SCF) calculation including the leading
Uehling correction (Fig. 3c) in the Dirac-Fock equations.
The results for∆EUeh,SCF

7s should be compared with corre-
sponding corrections∆EUeh,DF

7s to the DF energies (within
the SCF approach we can use DF energies only). Imple-
mentation of the Uehling potential in the SCF procedure,
respectively in the DF equation, yields significantly dif-
ferent results for the VP correction. The absolute value
for the Uehling correction ∆EUeh

7s increases by 22% for
Eka-Au, 7% for Eka-Hg and 17% for Eka-Hg+. A similar
estimate for the SE correction is not so easy. The last line
in Table 1 is the sum of the 3rd and 6th lines.

Note, that the Uehling potential can easily be imple-
mented in post-DF methods, such as e.g. in the multi-
configuration DF approach.

Based on the analysis presented in Table 1, we can
conclude as follows: The one-loop QED corrections to the
7s-state turn out to be considerably larger than the ones
to the 6d-state (see Ref. [28]). The result for the total
QED corrections to the 7s-state appear to be of the same
order of magnitude as the differences between the ener-
gies between 7s−6d obtained from pure relativistic many-
electron approaches [25] neglecting QED effects. This un-
derlines the significance of QED-radiative effects on the
energy of valance electrons in such superheavy systems.
In particular, the QED effects for the valence electrons
in Eka-Hg raise the chemical activity of this atom. The
difference to more exact and complex evaluations of such
effects is already near the inaccuracy of pure relativistic
calculation without QED.
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Appendix A: Effective potentials for valence
electrons

The effective local potential (V ) can be expressed in terms
of the radial wave function by inversion of the (radial)
Dirac-Fock equations within the local-potential approxi-
mation. The Dirac equation with a local potential V reads

(
− d

dr
+
κ

r

)
F (r) + V (r)G(r) = εG(r)

(
d

dr
+
κ

r

)
G(r) + [V (r) − 2m]F (r) = εF (r), (35)

where G and F are the large and small components of
the wave function, respectively, κ is the relativistic quan-
tum number and ε = Enκ −m. These equations allow for
the derivation of an approximate effective potential via
inversion of the first equation for the the large component
employing Dirac-Fock wave functions (GDF, FDF)

V (r) =

(
d

dr
− κ

r

)
FDF(r) + εGDF(r)

GDF(r)
. (36)

We should mention that the potential used in the calcu-
lations has been smoothed in the vicinity of the nodes
of the wave function GDF. In the present calculations of
the QED corrections the corresponding potential for the
7s-state has been used.
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